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Abstract-This paper deals with the laminar-flow heat transfer to a fluid flowing axially between a 
triangular or a square array of cylinders with a uniform wall temperature. The energy equation in finite- 
difference form is solved to obtain the axial variation of the cross-sectional temperature distribution, and 
the numerical results for the local Nusselt number Nul, and the logarithmic-mean Nusselt number Nu,, 
are presented. From the results, correlating equations suitable for predicting Nul, and Nu,, are derived as 
functions of the pitch-to-diameter ratio u and the local Graetx number Gz, or the Graetx number Gz. It 
is found that, at the same volume fractions of cylinders E, the heat transfer coefficient for the triangular 

array is larger than that for the square array, especially for the case E > 0.5. 

1. INTRODUCTION 

MOST OF the research that has been carried out on 
heat transfer to a fluid flowing axially between cyl- 
inders has been concerned with turbulent-flow heat 
transfer in relation to the cooling of the fuel rods in 
a nuclear reactor [ 1,2]. The only research done on 
laminar-flow heat transfer has dealt with an axially 
uniform heat flux on the wall of the cylinders in a 
triangular array or a square array. Apart from ana- 
lytical [3,4] and numerical [S-7) results for the asymp- 
totic local Nusselt number when the axial distance 
becomes large. little is known about the characteristics 
of axially varying heat transfer in this geometry. 

A knowledge of the heat transfer characteristics of 
laminar flow in the axial direction is required for the 
design of multi-tubular heat exchangers for highly 
viscous liquids, the analysis of heat transfer in geo- 
metrically similar systems, and the analysis of rod- 
bank regenerators [8]. 

This paper reports on a numerical study on the 
characteristics of axially varying heat transfer to a 
fluid flowing axially between cylinders, which are 
arranged in a triangular or a square array, with a 
uniform peripheral and axial wall temperature. 

2. MATHEMATICAL FORMULATION 

The analytical system and coordinates are shown 
in Fig. 1. A cylindrical coordinate system (r, 0, z) in 
the radial, circumferential, and axial directions was 
used for the analysis of heat transfer to a fluid flowing 

with laminar flow in the axial direction between a 
triangular or a square array of cylinders of diameter 
d,,, radius r,,, length 1, and spaced 2.r apart. From the 
symmetry of the cross-section of flow area, the element 
to be analyzed is a right-angled triangular prism of 
base s, 1116 for a triangular array or n/4 for a square 
array, and length 1. 

The following assumptions are made : (1) the wall 
of each cylinder in the heat transfer region (z > 0) is 
at a uniform peripheral and axial temperature t, ; (2) 
the fluid enters the heat transfer region at a uniform 
temperature to and flows through the heat transfer 
region with a fully developed laminar velocity dis- 
tribution; (3) the physical properties of the fluid are 
constant, and viscous dissipation can be ignored ; and 
(4) axial heat conduction through the fluid is neg- 
ligible in comparison with the convective transfer. 

On this basis, the energy equation and the boundary 
conditions of temperature are 

z=o; t=to 

r=ro; t = 1, 

(2) 

(3) 

r=r+ =s. at at at sin e 
c0se an-i% 

--COSe-,r=o (4) 

where 

e = 0, e = e+ ; atlao = 0 (5) 

w 3.?:3-8 417 
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NOMENCLATURE 

A dimensionless flow area per cylinder V dimensionless axial velocity. v/r,, 

(equation (14)) 1 axial velocity of fluid [m s- ‘1 
C P heat capacity of fluid at constant pressure L‘ln mean axial velocity [m s- ‘1 

[Jkg-‘K-‘1 M’ mass flow rate of fluid per cylinder 

d, diameter of cylinder [m] [kgs- ‘I 
F, f, g functions of 0 (equations (14), (37) and Z dimensionless axial coordinate. :a:r,‘r, 

(39), respectively) z axial coordinate [ml. 
Gz Graetz number. wcJkl 
Gz,,, local Graetz number, wc,/k: 

l&n logarithmic-mean heat transfer 
Greek symbols 

a 
coefficient (equation (16)) 

thermal diffusivity of fluid [m’ s ‘1 

[Wm-‘K-‘1 
A,, 6, constants 
E 

h,oc local heat transfer coefficient (equation 
volume fraction of cylinders (equation 

(IS)) [Wm-2K-‘] 
(32)) 

0 
K number of nodal points in angular 

angular coordinate [rad] 

direction 
P density of fluid [kg m- ‘1 
u 

k thermal conductivity of fluid 
pitch-to-diameter ratio, s/r, (= 2s/d,) 

[Wm-‘K-‘1 
4 dimensionless spacing between cylinders. 

a-1. 
L dimensionless length of cylinder, /a/r&, 
I length of cylinder [m] 

NU,, logarithmic-mean Nusselt number, 
Superscript 

h,,d,ik 
2 peripherally averaged, sy,’ x de/O+. 

N%C local Nusselt number, h,,,d,/k 
n normal coordinate [m] Subscripts 

%v heat flux at wall [w m- ‘1 b fluid bulk mean 

R dimensionless radial coordinate, r/r0 cylinder wall 

r radial coordinate [m] : inlet, asymptote for small z or I 

rO radius of cylinder [m] 00 asymptote for large z or 1. 

s half pitch between cylinders [m] 
T dimensionless temperature, Abbreviations 

(t--t,)l(t,--0) [SA] square array 
f temperature [K] [TA] triangular array. 

The dimensionless quantities 

Triangular array / 

Square array 

FIG. I, Analytical system and coordinates. 

0’ = ;[TA], O+ = 5 [SA] (6) 

are introduced, so as to put equations (l)- 
dimensionless form 

Z=O; T=O 

R=l; T=l 

R=R+ =!L. ZT ?T sin fI 
case’ aRcosO-;& -->- =o 

%= 0, 0 = %+; dT/rl% = 0. 

(7) 

-(5) into 

(8) 

(9) 

(10) 

(11) 

(12) 

[TA] and [SA] represent a triangular array and a The dimensionless velocity V is given by the fol- 
square array of cylinders. respectively. lowing analytical expressions [9] : 
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Table 1. Values of Aj x 10’ 

j u= 1.0 U= 1.001 u = 1.01 Q = 1.02 I? = 1.05 (I = 1.1 u= 1.2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

j 

- 3.05502 - 3.06870 -3.19004 
0.53311 0.53247 0.52368 

-0.03019 -0.02841 -0.01295 
-0.01697 -0.01702 -0.01651 

0.00135 0.00113 -0.00051 
0.00128 0.00125 0.00084 
0.00013 0.00015 0.00024 

-0.00009 -0.00008 0.00001 
- 0.00005 -0.00004 -0.00002 
-0.00001 -0.OOoO1 -0.00001 

u= 1.5 CT = 2.0 u = 4.0 

- 3.32065 
0.50801 
0.00239 

-0.01440 
-0.00157 

0.00035 
0.00018 
0.00004 
O.OOOOO 

- 3.68059 
0.43358 
0.03169 

- 0.00568 
-0.00152 
-0.00017 
-o.ooooo 

u=co E = 0.75 

-4.15694 
0.28029 
0.03782 
0.00108 

- 0.00024 
-0.00005 
-0.00001 
-O.OOOOO 

E = 0.50 E = 0.25 

-4.69398 
0.0678 1 
0.01749 
0.00131 
0.00006 
O.OOOOO 

1 - 5.02447 - 5.04988 - 5.05072 - 5.05072 -4.15404 - 4.95636 - 5.0492 1 
2 - 0.06992 - 0.08054 -0.08089 -0.08089 0.28135 -0.04145 - 0.08026 
3 0.00014 -0.00122 -0.00126 -0.00126 0.03787 0.00377 -0.00118 
4 0.00008 - 0.00002 -0.00002 -0.OOoO2 0.00106 0.00035 -0.00001 
5 0.00001 -0.00000 -o.OOOOO -o.OOOOO -0.00025 0.00002 O.OOOOO 
6 O.OOOOO -0.00005 O.OOOOO 
7 -0.00001 

+ ;, ‘j;;?,’ ( R4’- A)] VW (13) 

where 

A = 2J3a2-n [TA], A = 4u=-n [SA] (14) 

+t!/ _J_ 

( I 

‘+ cos 6jtl 

,=, J 31-u 0 (COSe)6j+2 
de 

1 
+ 

s 

‘+ cos 6jtl 
a’*‘(3j- 1) O (cos eyjde 

+ J3cr5 [TA] 

F= u4 ;(ln202-3)+; 

de 

de 

and A, and aj are constants, the recalculated and 
replenished values of which are listed in Tables 1 and 
2, respectively, for u and E (see equation (32)) treated 
in the present numerical analysis. 

The local heat transfer coefficient h,,, which is 
based on the peripherally averaged wall heat flux z 
and the wall-to-bulk temperature difference (tW - tb), 
is given by 

h,&tW - t&_._ = -k(dr/dr), = ;. (16) 

Taking a heat balance between z = 0 and I, the 
logarithmic-mean heat transfer coefficient h,, is given 

by 

h,,nd,fAt,, = WC,@,--t,),,, (17) 

where At,, is the logarithmic-mean temperature 
difference 

(Lv-lo)-(L--d:=, 
“lrn = In {(tW-~to)/(tW-fb)r=,} (18) 

and w is the mass flow rate of fluid per cylinder given 

by 

w = v,przA. (19) 

The local Nusselt number Nul, and the logarithmic- 
mean Nusselt number /Vu,,,, are obtained from the 
dimensionless forms of equations (16)-( 19) 

Nu,, = k = - 
WTIWv 
t 1 - TtL, (20) 

hmdo Nu,, = k = - $ In (1 - Tb)z_L (21) 

where 

+2a2-; [SA] (15) L = la/r,& (22) 
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FIG. 2. Variation of dimensionless bulk temperature and 
dimensionless temperature gradient at wall with local Graetz 

number. 

K = 41 and 61 for c = 1.0-1.1, K = 21 and 31 for 
a=1.2-2.0,andK=lland21fora=4.0[TA]or 
K=46and61fora=l.O-l.O2,andK=31and46 
for u = 1.05-4.0 [SA]. 

In the finite-difference approximation of the energy 
equation, the central-difference approximation was 
used in the R- and &directions, and in the Z-direction 
the backward-difference approximation, in which the 
accuracy was improved by using three levels of Z, i.e. 
the calculating level and the nearest two upstream 
levels of Z. A quadratic curve was used for the finite- 
difference approximation of the temperature gradient 
at the boundaries. 

The first step was to calculate Vat each nodal point 
for the given value of Q, then to set the boundary 
condition for Z = 0. and to begin the calculation at a 
very low value of Z corresponding to a local Graetz 
number greater than 5 x 10h. The iterative calculation 
for each level of Z was terminated when the absolute 
values of the differences between the values of Tat all 
the nodal points in the R- and O-directions before and 
after the iteration were below lo-‘. The calculations 
then advanced to a higher level of Z. 

5. RESULTS OF NUMERICAL ANALYSIS 

Figure 2 shows the variation of the dimensionless 
bulk temperature r, and the peripherally averaged 
dimensionless temperature gradient at the wall 
(CTjZR), with Gz,,, with the pitch-to-diameter ratio 
o as a parameter. As a matter of course, Tb and 
(dT/dR), approach I and 0, respectively, for small 
Gz,,. The value of T,,, that is, the heat transfer rate 
first increases and then slightly decreases as Q is 
reduced. The reason for this behavior is that, as c is 

FIG. 3. Variation of local Nusselt number with local Graetz 
number. 

reduced, the decrease in the flow area increases the 
velocity gradient at the wall and thereby increases the 
heat transfer rate ; below a certain value of u, however, 
the velocity gradient at the wall at 8 x 0 decreases and 
this decreases the heat transfer rate. 

Figures 3 and 4 show the variation of Nul, and 
Nu,, with Gzloc and Gz. respectively, with a as a par- 
ameter. These figures reveal that Nu,, and Nu,, 
increase and then slightly decrease, as c is reduced 
(see also Fig. 8 for small a). The broken lines in Figs. 
3 and 4 represent equations (29) and (30), respectively. 
Nu,, and Nu,, tend to approach equations (29) and 
(30), respectively, for large Gil, and Gz. 

Figure 5 shows the variation of Nu,,., (= Nu,,.,) 
with the dimensionless spacing between cylinders Q 
(= c-- 1). @ represents the present numerical solu- 

FIG. 4. Variation of logarithmic-mean Nusselt number with 
Graetz number. 
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FIG. 5. Variation of asymptotic Nusselt number and mean 
value of the third root of the velocity gradient at wall with 

dimensionless spacing between cylinders. 

tion shown in Table 3 for a uniform wall temperature 

both peripherally and axially ; @ represents the solu- 
tion for a uniform wall temperature peripherally and 
a uniform wall heat flux axially, and @ the solution 

for a uniform heat flux both peripherally and axially 

[6]. In each case, Nu,,,, increases and then decreases 
as (T is reduced, while the difference between the values 

of NW,., is reduced, as o is increased. The variation 

of (aV/t?R)A ’ in equation (29) with 4, which is also 
shown in Fig. 5, is qualitatively similar to that of 

NU I0C.X~ 
Figures 6 and 7 show the comparison between the 

numerical results for a triangular array of cylinders 
and those for a square array of cylinders at the same 
volume fractions of cylinders E given by 

(32) 

Table 3. Asymptotic Nusselt number 

Triangular Square 
c array array 

1 .O 8.92 
1.001 8.93 
1.01 9.02 
1.02 9.13 
1.05 9.52 
1.1 9.91 
I.2 9.89 
I.5 6.86 
2.0 4.17 
4.0 I .96 

4.02 
4.01 
3.98 
3.99 
4.07 
4.17 
4.33 
4.21 
3.29 
1.82 

- - -Scuare cm) 

Gz!,, 

FIG. 6. Comparison of local Nusselr number between tri- 
angular and square arrays of cylinders. 

As seen from the figures. in general, the heat trans- 
fer coefficient for the triangular array is larger than 
that for the square array. especially for the case 
& > 0.5. 

6. CORRELATING EQUATIONS FOR THE 

NUSSELT NUMBER 

As shown in Figs. 3 and 4, over the range cr = 1 .O- 
1.1 [TA] or cr = l&1.2 [SA]. the local and loga- 

rithmic-mean Nusselt numbers are only slightly affec- 
ted by CJ and can be expressed as 

Nuloc = 9.26( I+ 0.0022G&?) ’ ’ [TA] 

Nu,,, = 4.08( 1 +O.O058C&?‘) ’ ’ [SA] (33) 

Nu,, = 9.26(1 f0.0179Gr’ ‘“)I ’ [TA] 

Nu,,, = 4.08(1+0.0349Gz’ 4h)’ 4 [SA]. (34) 

Figure 8 indicates that these two formulas, rep- 
resented by the solid lines. are quite close to the 

numerical solutions represented by the keyed symbols. 
and are therefore satisfactory correlating equations 

for the Nusselt numbers. 
In this connection, for the case 0 = 1 .O, that is, for 

the case of cylinders in contact with one another, Nulo, 

and Nu,, can be expressed as 

N%L = 8.92( I +0.0026G:,:,:h) ’ a [TA] 

Nu,,, = 4.02( I +O.O052G~,j,:~) I ’ [SA] (35) 

Nu,, = 8.92(1 +O.O143G-_’ 4h)’ 4 [TA] 

Nu,,, = 4.02(1 f0.034761’ 4h)‘,4 [SA]. (36) 

Over the range CJ > I.1 [TA] or u > 1.2 [SA], the 
formulas suitable for predicting the Nusselt numbers 

FIG. 7. Comparison of logarithmic-mean Nusselt number 
between triangular and square arrays of cylinders. 
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FIG. 8. Comparison of correlating equations (33) and (34) with numerical solutions for small pitch-to- 
diameter ratios. 

can be derived from the asymptotic Nusselt numbers Nw,.o = (3/2)g Gz”~. (40) 
given in Section 3. 

The numerical solution shown in Fig. 5 can be 
As Gz, and Gz are increased, the expressions for 

formulated as (see broken lines in Fig. 5) 
Nu,, and Nu,, shift from equation (37) to equations 
(39) and (40), respectively. Hence the expressions of 

NW,,,, = Nu,,,, = 8;1)2+(;;$;; = f [TN 
the following form seem reasonable : 

Nu,, = (Nu:,., + N&J Ii2 (41) 

Nu,,,, = NW,,, = 
4.00( 1+0.5t.Wl$) 

(1 +0.765d5’3) 
= f [SAI (37) Nu,, = (Nu:,,, + Nu:,,c,) I”. (42) 

m [TAI 

Substituting equations (37), (39) and (40) into equa- 

m= tions (41) and (42) gives 

caviaR,:l’=m [SA]. 

Nu,,/.f= {l+(g/f)2Gz~}“2 (43) 

(38) Nu,,/f = { 1 + (3/2)2(g/j-)2Gz2’3} I”. (44) 

Substituting equation (38) into equation (29) (and Figure 9 shows a comparison between equations 

setting r(4/3) = 0.8930) gives (43) and (44) (the solid curves) and the numerical 
solutions (the keyed symbols). The agreement is seen 

Nu,oc.o = 
2.34( 1+24r#~) 

Gzc to be reasonably good over the range e = 1.1-4.0 [TA] 
(1 +36.5$5’4)(2,/3cr2 -,)“’ or u = 1.2-4.0 [SA], showing that equations (43) and 

=g Gz;: [TA] 

Nu,,., = 
1.69(1+9.14) 

(1+10.&#P4)(4C?*-n)“3 
Gzz 

= g Gr,:; [SA]. 

(44) are satisfactory correlating equations for the 
Nusselt numbers. 

7. CONCLUSIONS 
(39) A numerical analysis has been carried out to deter- 

mine the characteristics of laminar-flow heat transfer Therefore. from equation (31) 
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Triongulor array 
10 

FIG. 9. Comparison of correlating equations (43) and (44) with numerical solutions for large pitch-to- 
diameter ratios. 

to a fluid flowing axially between a triangular array 

[TA] or a square array [SA] of cylinders with a uni- 
form wall temperature and various pitch-to-diameter 
ratios e (or various dimensionless spacings 
C#J = 6- I). The relationships between the local Nus- 
selt number Nu,, and the local Graetz number Gz,,,, 
and between the logarithmic-mean Nusselt number 
Nu,, and the Graetz number Gz were formulated, for 
CT = l&1.1 [TA] ore = 1.0-1.2 [SA] as 

Nuloc = 9.26(1 +0.0022G~,!$‘)“~, 

Nu,,,, = 9.26(1 +0.0179G~‘~~~)“~ [TA] 

Nu,, = 4.08( 1 +0.0058G-‘~:‘6) lr4 LIOL > 

NM - 4 08( I+ 0.0349G~‘.~~) “4 ,m- . [SA] 

and, for o = 1. I-4.0 [TA] or e = 1.2-4.0 [SA] as 

Nuloc = (f‘? +q2 G&,3) ‘is 
I LlDC 1 

Nu,, = {,f’ +(3g/2)2G?} “’ 

where 

,f = 8.92(1+2.824) 
I f6.8645 3 ’ 

2.34( I + 244) 

’ = (1 +36.5~#?)(2J3~~-n)‘~ 
PAI 
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TRANSFERT THERMIQUE POUR UN ECOULEMENT LAMINAIRE DE FLUIDE AXIAL 
ENTRE DES CYLINDRES A TEMPERATURE DE SURFACE UNIFORME 

R&sum&-& traite le transfert thermique pour un ecoulement laminaire axial de fluide a travers un 
arrangement triangulaire ou carre de cyhndres a temperature de paroi uniforme. L’equation d’tnergie mise 
sous forme de differences finies est rtsolue pour obtenir la variation axiale de la distribution de temperature 
dans la section droite, et les resultats numeriques sont present&s pour le nombre de Nusselt local Nu,, et 
pour le nombre de Nusselt Nu,, relatif a la moyenne logarithmique. On etablit des formules pour la 
prediction de Nu,, et Nu,, en fonction du rapport pasidiambtre 0 et du nombre de Graetz local Gr,, et du 
nombre de Graetz G;. On trouve que pour une m&me fraction de volume des cylindres E, le coefficient 
de transfert thermique pour l’arrangement triangulaire est suptrieur a celui pour I’arrangement carre, 

specialement pour le cas E > 0,5. 

WARMETRANSPORT VON EINEM ROHRBUNDEL AN EINE LAMINARE 
LANGSANSTROMUNG BE1 EINHEITLICHER OBERFLACHENTEMPERATUR 

Zummmenfasaung-Der Warmeiibergang in einem laminaren liingsdurchstriimten Rohrbiindel wird unter- 
sucht. Die Rohre befinden sich in quadratischer oder in Dreiecksanordnung, die OberlIachentemperatur 
ist einheithch. Die Energiebilanz wird in Form von finiten Differenzen geliist, urn die axiale Anderung 
der Temperaturverteilung in den Striimungsquerschnitten zu bestimmen. Numerische Ergebnisse fiir die 
lokale Nusselt-Zahl (Nu,,) und die mittlere logarithmische Nusselt-Zahl (Nu,,) werden ermittelt. Aus 
den Ergebnissen werden Korrelationsgleichungen zur Berechnung von Nu,, und Nu,, als Funktion des 
Teilungsverhiiltniss (u) und der lokalen Graetz-Zahl (Gz,,) oder der Graetz-Zahl (Gz) angegeben. Es 
zeigt sich, da&-bei einem konstanten Vohtmenanteil (E) der Zylinder-der Wiirmeiibergangskoeffizient 
fur eine Dreiecksanordnung griiBer ist als bei einer quadratischen Anordnung. Dies gilt insbesondere fiir 

den Fall E > 0,5. 

TEI-IJIOTIEPEHOC OT JIAMHHAPHOI-0 IIOTOKA K AKCHAJIbHOMY OTOKY 
mMflKOCTH MEKAY ~MJIHHJJPAMH C OflklHAKOBOft TEMl-IEPATYPOtl 

l-IOBEPXH0CTb-I 

Amwr~kiccnenyerca TennonepeHoc 0T nab4HHapHoro noToKa K aKcmnbHobfy norotiy xHmcocT33 

Memy UHnHHn~MHCO~HaKOBO~TeM~~Typo~~HOK,p~nOnO~e~blMA BUlaXMaTHOMHJlH KOpH- 

nOpHOM nOp!UlKe. YpaBHeHHe COXpaHeHHK SHepllW pellIWTCK KOHe'IHO-~3HOCTHblP.l MeTOllOM JIJIP 

onpenenewa BycHanbHoro Hm4eHemn pacnpeneneHHn Tebfnepaypbi K nonepe~Hob4 axeHim llpenc- 

TaBJleHbl 'IHCJleHHble pe3ynbTaTbi AJM JlOKKJlbHOrO Nu, H nOrapH@4HWCKOrO CpenHero Nu, SHC~JI 

HyCWIbTa. Ha OCHOBC nOQWMiblX pe3yJlbTaTOB BblBOJlKTCK KO~JISUHOHHble COOTHOUleHHI &Ml 

pacwra Nu, H Nu,,,, K 3aBHcmmmi 0~ 0THotuemn mara x mabmpy (r 51 o-r nom.mioro PR~JU 
lWrua Gz, HJIH nHcJra FpeTua Gz. HakeHo, YTO npH OmHaKOBbIX 06aCMHb1x nonax UHJIHHLQ~OB e 

Ko*muieHTTennonepemca ~cny9ae mamaTHor pacnonoxeHHn u~nmwpos 6onbme,neeM B cnygae 
ropwopeoro, OCO~~HHO ttorna E > 0.5. 


